Skip to content
GitHub Agentic Workflows

Safe Inputs

The safe-inputs: (validated user input tools) element allows you to define custom MCP (Model Context Protocol) tools directly in your workflow frontmatter using JavaScript, shell scripts, or Python. These tools are generated at runtime and mounted as an MCP server, giving your agent access to custom functionality with controlled secret access.

safe-inputs:
greet-user:
description: "Greet a user by name"
inputs:
name:
type: string
required: true
script: |
return { message: `Hello, ${name}!` };

The agent can now call greet-user with a name parameter.

Each safe-input tool requires a unique name and configuration:

safe-inputs:
tool-name:
description: "What the tool does" # Required
inputs: # Optional parameters
param1:
type: string
required: true
description: "Parameter description"
param2:
type: number
default: 10
script: | # JavaScript implementation
// Your code here
env: # Environment variables
API_KEY: "${{ secrets.API_KEY }}"
timeout: 120 # Optional: timeout in seconds (default: 60)
  • description: - Human-readable description of what the tool does. This is shown to the agent for tool selection.
  • timeout: - Maximum execution time in seconds (default: 60). The tool will be terminated if it exceeds this duration. Applies to shell (run:) and Python (py:) tools.

Choose one implementation method:

  • script: - JavaScript (CommonJS) code
  • run: - Shell script
  • py: - Python script (Python 3.1x)
  • go: - Go (Golang) code

You can only use one of script:, run:, py:, or go: per tool.

JavaScript tools are automatically wrapped in an async function with destructured inputs:

safe-inputs:
calculate-sum:
description: "Add two numbers"
inputs:
a:
type: number
required: true
b:
type: number
required: true
script: |
const result = a + b;
return { sum: result };

Your script is wrapped as async function execute(inputs) with inputs destructured. Access secrets via process.env:

safe-inputs:
fetch-data:
description: "Fetch data from API"
inputs:
endpoint:
type: string
required: true
script: |
const apiKey = process.env.API_KEY;
const response = await fetch(`https://api.example.com/${endpoint}`, {
headers: { Authorization: `Bearer ${apiKey}` }
});
return await response.json();
env:
API_KEY: "${{ secrets.API_KEY }}"

Shell scripts execute in bash with inputs as environment variables (e.g., repoINPUT_REPO):

safe-inputs:
list-prs:
description: "List pull requests"
inputs:
repo:
type: string
required: true
state:
type: string
default: "open"
run: |
gh pr list --repo "$INPUT_REPO" --state "$INPUT_STATE" --json number,title
env:
GH_TOKEN: "${{ secrets.GITHUB_TOKEN }}"

Shared gh CLI Tool: Import shared/gh.md for a reusable gh tool that accepts any CLI command via args parameter.

Python tools execute using python3 with inputs available as a dictionary. Access inputs via inputs.get('name'), secrets via os.environ, and return results by printing JSON to stdout:

safe-inputs:
analyze-data:
description: "Analyze data with Python"
inputs:
numbers:
type: string
description: "Comma-separated numbers"
required: true
py: |
import json
numbers_str = inputs.get('numbers', '')
numbers = [float(x.strip()) for x in numbers_str.split(',') if x.strip()]
result = {
"count": len(numbers),
"sum": sum(numbers),
"average": sum(numbers) / len(numbers) if numbers else 0
}
print(json.dumps(result))

Python 3.10+ is available with standard library modules. Install additional packages inline using pip if needed.

Go tools execute using go run with inputs provided as a map[string]any parsed from stdin. Standard library imports (encoding/json, fmt, io, os) are automatically included:

safe-inputs:
calculate:
description: "Perform calculations with Go"
inputs:
a:
type: number
required: true
b:
type: number
required: true
go: |
a := inputs["a"].(float64)
b := inputs["b"].(float64)
result := map[string]any{
"sum": a + b,
"product": a * b,
}
json.NewEncoder(os.Stdout).Encode(result)

Your Go code receives inputs map[string]any from stdin and should output JSON to stdout. The code is wrapped in a package main with a main() function that handles input parsing.

Available by default:

  • encoding/json - JSON encoding/decoding
  • fmt - Formatted I/O
  • io - I/O primitives
  • os - Operating system functionality

Access environment variables (including secrets) using os.Getenv():

safe-inputs:
api-call:
description: "Call an API with Go"
inputs:
endpoint:
type: string
required: true
go: |
apiKey := os.Getenv("API_KEY")
endpoint := inputs["endpoint"].(string)
// Make your API call here
result := map[string]any{
"endpoint": endpoint,
"authenticated": apiKey != "",
}
json.NewEncoder(os.Stdout).Encode(result)
env:
API_KEY: "${{ secrets.API_KEY }}"

Define typed parameters with validation:

safe-inputs:
example-tool:
description: "Example with all input options"
inputs:
required-param:
type: string
required: true
description: "This parameter is required"
optional-param:
type: number
default: 42
description: "This has a default value"
choice-param:
type: string
enum: ["option1", "option2", "option3"]
description: "Limited to specific values"
  • string - Text values
  • number - Numeric values
  • boolean - True/false values
  • array - List of values
  • object - Structured data
  • required: true - Parameter must be provided
  • default: value - Default if not provided
  • enum: [...] - Restrict to specific values
  • description: "..." - Help text for the agent

Set execution timeout with timeout: field (default: 60 seconds):

safe-inputs:
slow-processing:
description: "Process large dataset"
timeout: 300 # 5 minutes (default: 60)
py: |
import json
import time
time.sleep(120)
print(json.dumps({"status": "complete"}))

Enforced for shell (run:) and Python (py:) tools. JavaScript (script:) tools run in-process without timeout enforcement.

Pass secrets and configuration via env: (available in JavaScript via process.env, shell via $VAR_NAME):

safe-inputs:
secure-tool:
description: "Tool with multiple secrets"
script: |
const { API_KEY, API_SECRET } = process.env;
// Use secrets...
env:
API_KEY: "${{ secrets.SERVICE_API_KEY }}"
API_SECRET: "${{ secrets.SERVICE_API_SECRET }}"

Secrets using ${{ secrets.* }} are masked in logs.

When output exceeds 500 characters, it’s saved to a file. The agent receives the file path, size, and JSON schema preview (if applicable).

Import tools from shared workflows using imports:. Local tool definitions override imported ones on name conflicts:

imports:
- shared/github-tools.md
---
on: workflow_dispatch
engine: copilot
imports:
- shared/pr-data-safe-input.md
safe-inputs:
analyze-text:
description: "Analyze text and return statistics"
inputs:
text:
type: string
required: true
script: |
const words = text.split(/\s+/).filter(w => w.length > 0);
return {
word_count: words.length,
char_count: text.length,
avg_word_length: (text.length / words.length).toFixed(2)
};
safe-outputs:
create-discussion:
category: "General"
---
Analyze provided text using the `analyze-text` tool and create a discussion with results.

Tools provide secret isolation (only specified env vars), process isolation (separate execution), and output sanitization (large outputs saved to files). Only predefined tools are available to agents.

FeatureSafe InputsCustom MCP ServersBash Tool
SetupInline in frontmatterExternal serviceSimple commands
LanguagesJavaScript, Shell, PythonAny languageShell only
Secret AccessControlled via env:Full accessWorkflow env
IsolationProcess-levelService-levelNone
  • Tool Not Found: Verify tool name matches exactly
  • Script Errors: Check workflow logs for syntax errors
  • Secret Not Available: Confirm secret name in repository/org settings
  • Large Output: Agent reads file path from response